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ABSTRACT

This first part of a two-part study on storm-scale radar and satellite data assimilation provides an overview

of a multicase study conducted as part of the NOAA Warn-on-Forecast (WoF) project. The NSSL Experi-

mental WoF System for ensembles (NEWS-e) is used to produce storm-scale analyses and forecasts of six

diverse severe weather events from spring 2013 and 2014. In this study, only Doppler reflectivity and radial

velocity observations (and, when available, surface mesonet data) are assimilated into a 36-member, storm-

scale ensemble using an ensembleKalman filter (EnKF) approach.A series of 1-h ensemble forecasts are then

initialized from storm-scale analyses during the 1-h period preceding the onset of storm reports. Of particular

interest is the ability of these 0–1-h ensemble forecasts to reproduce the low-level rotational characteristics of

supercell thunderstorms, as well as other convective hazards. For the tornado-producing thunderstorms

considered in this study, ensemble probabilistic forecasts of low-level rotation generally indicated a rotating

thunderstorm approximately 30min before the time of first observed tornado. Displacement errors (often to

the north of tornado-affected areas) associated with vorticity swaths were greatest in those forecasts launched

30–60min before the time of first tornado. Similar forecasts were produced for a tornadic mesovortex along

the leading edge of a bow echo and, again, highlighted awell-defined vorticity swath asmuch as 30min prior to

the first tornado.

1. Introduction

The NOAA Warn-on-Forecast (WoF; Stensrud et al.

2009, 2013) research project is tasked with the devel-

opment of very short–range (0–1 h) probabilistic fore-

casts that accurately predict severe convective storms

and their hazards. The eventual goal of the WoF project

is to increase tornado, severe thunderstorm, and flash

flood warning lead times. Storm-scale data assimilation

and ensemble forecasting in a future WoF system will

most likely be performed on very high–resolution (grid

spacing ;1km or less), event-dependent grids, and will

be used to anticipate hazardous weather such as torna-

does, damaging straight-line winds, hail, and flooding.

The WoF system will need to ingest a variety of data

types ranging from ground-based radar and mesonet

observations to remotely sensed observations from sat-

ellites, such as cloud water path retrievals and radiances.

To this end, development and testing of subhourly

storm-scale data assimilation with a Weather Research

and Forecasting (WRF) Model–based system has begun

on somewhat coarser convection-allowing grids (3-km

grid spacing). In this first part of a two-part study that

evaluates forecasts produced by an experimental WoF

system, results from several radar data–only assimilation

experiments are presented. Additional work in Jones

et al. [(2015, manuscript submitted toWea. Forecasting),

hereafter Part II] further evaluates the impact of com-

bined radar and satellite data assimilation.

The NSSL Experimental WoF System for ensembles

(NEWS-e; described fully in the next section) uses an en-

semble Kalman filter (EnKF; Evensen 1994; Houtekamer

and Mitchell 1998; Anderson and Collins 2007) to assimi-

late Doppler observations from multiple radars into the

storm-scale ensemble. A number of earlier radar data as-

similation studies have used this approachwith a simplified

cloud model, and demonstrated the ability of a storm-

scale EnKF to produce accurate analyses of isolated
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supercell thunderstorms and improved forecasts (e.g.,

Snyder and Zhang 2003; Dowell et al. 2004; Tong and

Xue 2005; Yussouf and Stensrud 2010). Aksoy et al.

(2009, 2010) performed EnKF simulations of super-

cellular, linear, and multicellular convective modes

using an idealized approach similar to the above-

referenced studies, and found that the EnKF can per-

form effectively across all convective regimes. They also

found that the representation of mesoscale uncertainty

(in the form of perturbations to the horizontal wind

components of the environmental sounding) signifi-

cantly increased ensemble spread and improved fits to

observations for both reflectivity and radial velocity.

Consistent with this previous work by Aksoy et al.

(2009, 2010), studies by Stensrud and Gao (2010) and

Yussouf et al. (2013a) found that an improved repre-

sentation of mesoscale heterogeneity in the near-storm

environment produced more accurate EnKF analyses of

tornadic supercell thunderstorms and improved proba-

bilistic forecasts of low-level rotation. More recent data

assimilation case studies of isolated supercell thunder-

storms (e.g., Dowell et al. 2010; Jung et al. 2012; Yussouf

et al. 2013b) and mesoconvective systems (e.g., Snook

et al. 2011, 2012; Putnam et al. 2014; Chang et al. 2014;

Wheatley et al. 2014; Johnson et al. 2015) have in-

creasingly used storm-scale EnKFs in conjunction with

models initialized with real data, which are then runwith

full-physics options (in contrast to idealized simulations,

where initial conditions are supplied by a one-dimensional

sounding that varies with height). In addition to these

retrospective studies, the EnKF has also been used in

real-time forecast systems to assimilate conventional

observations (i.e., no radar data), and then launch

convection-permitting forecasts in the 1–12-h and next-

day ranges (e.g., Romine et al. 2014; Schwartz et al. 2015).

In light of these previous works, this paper aims to

provide an overview of a multicase study, with a model

that uses full physics and mesoscale variability, con-

ducted as part of development efforts surrounding

the WoF project. For several severe weather events,

NEWS-e is used to produce storm-scale analyses by only

assimilating Doppler reflectivity and radial velocity ob-

servations from several radars (and, when available,

surface mesonet data). The aspects of these experiments

described in the next section—such as storm-scale grid

placement and radar data assimilation start time and

frequency—are chosen to mimic the constraints of an

initial real-time WoF system, which will be on demand

and focused on the ‘‘next hour’’ forecast problem. A

series of 1-h ensemble forecasts (initialized from storm-

scale analyses) are launched during the 30–60-min pe-

riod preceding the onset of storm reports. Of particular

interest is the ability of these 0–1-h ensemble forecasts

to reproduce the low-level rotational characteristics of

supercell thunderstorms. This suite of forecasts also

will serve as a control for additional storm-scale experi-

ments, conducted to evaluate the impact of combined

radar and satellite data assimilation, which are presented

in Part II.

Six severe weather events from spring 2013 and 2014

are considered as part of this study, in an effort to ex-

pand beyond the traditional approach of rigorously

evaluating a single case study. The first three events were

selected from spring 2013 and occurred over central

Oklahoma, with a focus—like past studies—on isolated

supercell thunderstorms (Figs. 1a,c,e). These include the

Edmond-Carney tornado on 19 May (Fig. 1a), the Moore

tornado on 20 May (Fig. 1c), and the El Reno tornado on

31May (Fig. 1e), whichwere rated on the enhanced Fujita

(EF) scale as EF3, EF5, and EF3, respectively.

The remaining three events are selected from spring

2014 and span different geographical regions (Figs. 2a,c,e).

The first two events of 2014 were associated with

a powerful springtime storm system that slowly mi-

grated eastward across the central plains. On 27 April

2014, the Storm Prediction Center (SPC) day 1 con-

vective outlook (issued at 2000 UTC) called for a mod-

erate to high risk of severe thunderstorms across much

of Arkansas. The only tornadic supercell thunderstorm

tracked just to the north and east of Little Rock [see

location of Little Rock’s radar (KLZK) in Fig. 2a],

producing an EF4 tornado. The 28 April 2014 event

(Fig. 2c) produced a widespread tornado outbreak over

Mississippi and Alabama. There were 21 confirmed

tornadoes across the Jackson, Mississippi, National

Weather Service (NWS) forecast area alone. The EF4

that affected the city of Louisville, Mississippi, was the

most devastating, resulting in 10 fatalities and 81 in-

juries. The final event for study occurred on 11–12 May

over eastern Nebraska and western Iowa, and was

marked by a supercell-to-MCS transition, with both

convective modes associated with tornado and wind

reports (Fig. 2e).

The next section provides a discussion of the ensemble

and EnKF methodology applied to the above-described

severe weather events. The assimilation results are

presented in section 3. Finally, in section 4, the results of

this study are summarized, their implications are dis-

cussed, and suggestions for future research on this topic

are offered.

2. Methodology

A multiscale data assimilation system using the ad-

vanced research version of WRF, version 3.4.1 (ARW;

Skamarock et al. 2008), has been used to produce
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FIG. 1. Comparison of observed and ensemble posterior mean 2 kmAGL radar reflectivity at

(a),(b) 2045 UTC 19 May; (c),(d) 2000 UTC 20 May; and (e),(f) 2300 UTC 31 May 2013. The

ensemble mean radar reflectivity fields are displayed in (b),(d), and (f) around the time of the

first tornado report. The black contours in (b),(d), and (f) indicate the observed 40-dBZ radar

reflectivity contours [from (a),(c), and (e)].
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storm-scale ensemble analyses and forecasts of six di-

verse severe weather events during spring 2013 and 2014

(Table 1). The storm-scale ensemble is nested within a

mesoscale ensemble that assimilates routinely available

mesoscale observations, as well as observations from

mesonet stations (see, e.g., McPherson et al. 2007).

Radar observations are assimilated into the higher-

resolution storm-scale ensemble with the ensemble

FIG. 2. As in Fig. 1, but for reflectivity at (a),(b) 0000 UTC 28 Apr; (c),(d) 2100 UTC 28 Apr;

and (e),(f) 2100 UTC 11 May 2014.
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adjustment Kalman filter (EAKF1; Anderson 2001)

encoded in the Data Assimilation Research Testbed

(DART; Anderson and Collins 2007; Anderson et al.

2009) software. The goal of the more detailed method-

ology that follows is to obtain reasonable analyses of the

supercells present in each event and then attempt pre-

diction of their subsequent evolution.

a. Mesoscale data assimilation

The experimental domain utilizes a one-way nest

setup, whereby the parent and nested grids are run

concurrently and the parent grid provides lateral

boundary conditions for the nested run (with no feed-

back from the nested grid to the parent grid). The parent

grid has a horizontal gridpoint spacing of 15 km and

covers the continental United States, while the nested

grid has a horizontal gridpoint spacing of 3 km and its

location is event dependent (Fig. 3). Placement of the

nested grid reflects the most likely region for severe

convective development as guided by day 2 convective

outlooks from the Storm Prediction Center. The vertical

grid has 51 levels that are spaced from less than 100m

apart near the surface to over 1 km apart at model top,

defined as the 10-hPa pressure surface. The prescription

of vertical levels is nearly identical to that of the oper-

ational Rapid Refresh (RAP) and High-Resolution

Rapid Refresh (HRRR) models, with some increased

resolution (i.e., five additional sigma surfaces) below

2kmAGL. TheDART state vector, which is updated by

the EnKF, is composed of the WRF Model’s prognostic

variables, including zonal and meridional velocity

components (u and y, respectively) in Cartesian co-

ordinates, vertical velocity w, perturbation potential

temperature, perturbation geopotential, and the per-

turbation surface pressure of dry air. The parent

and nested grids utilize the Thompson microphysical

scheme (Thompson et al. 2004, 2008), so the DART

state vector is augmented by the six mass variables for

water vapor, cloud water, rain, cloud ice, snow, grau-

pel, as well as number concentration variables for rain

and ice.

Initial conditions for the parent and nested grids are

downscaled from the 21-member 0000 UTC Global

Ensemble Forecast System (GEFS) forecast cycle. The

GEFS also provides boundary conditions for the parent

grid, which provides boundary conditions for the nested

grid via the one-way nesting capability with the WRF

Model. Different sets ofWRFModel physics options are

applied to each ensemble member to account for model

physics uncertainties (e.g., Stensrud et al. 2000; Fujita

et al. 2007; Meng and Zhang 2008; Wheatley et al. 2014;

see Table 2). The physics options are the same on the

parent and nested grids, except that no cumulus pa-

rameterization is used on the nested grid.

Mesoscale observations of pressure (altimeter setting),

temperature, dewpoint, and horizontal wind components

from the NOAA Meteorological Assimilation Data In-

gest System2 (MADIS; Miller et al. 2007), as well as

MADIS mesonet data, are ingested into the ensemble

TABLE 1. Summary of severeweather events considered in this study. Start time in the first column refers to the first radar data assimilation

cycle. The radar column includes Vance Air Force Base, OK (KVNX); Oklahoma City, OK (KTLX); Tulsa, OK (KINX); Frederick, OK

(KFDR); Fort Smith, AR (KSRX); Little Rock, AR (KLZK); Memphis, TN (KNQA); Jackson, MS (KGDX); Columbus Air Force Base,

MS (KGWX);Hastings, NE (KUEX);Omaha, NE (KOAX); andDesMoines, IA (KDMX). The date column includes the primary calendar

day(s) in which a severe thunderstorm event occurred, which are then used for event identification throughout this study.

Date Event SPC outlook Radars Start time (UTC)

First tornado report

(UTC)

19 May 2013 Edmond–Carney,

OK, tornado

Moderate KVNX, KTLX, KINX 1900 2122 (Edmond

tornado); 2142

(Carney tornado)

20 May 2013 Moore, OK, tornado Moderate KFDR, KVNX, KTLX 1800 1956

31 May 2013 El Reno, OK,

tornado

Moderate KFDR, KVNX, KTLX 2100 2305

27 Apr 2014 Central AR tornado High KINX, KSRX, KLZK 2000 0006 (next UTC day)

28 Apr 2014 MS–AL tornado

outbreak

High KNQA, KGDX, KGWX 1800 2051 (Louisville,

MS, tornado)

11–12 May 2014 NE–IA supercell-to-

MCS transition

Moderate KUEX, KOAX, KDMX 1900 2050 (NE tornado)

1 The EAKF is one variant of the EnKF, so the term EnKF is

used in its place throughout the rest of this manuscript.

2 Observation platforms included are METAR and marine sur-

face stations, rawinsondes, the Aircraft Communications Ad-

dressing and Reporting System (ACARS), and NOAA GOES

(horizontal wind components).
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using the parallel version of the DART software, which is

based upon the ensemble adjustment Kalman filter de-

scribed in Anderson (2001). No radar data are used in

producing the initial mesoscale ‘‘backgrounds’’ on either

grid. The mesoscale data assimilation process begins at

0000 UTC on an event day with the forecast step,

whereby a 1-h forecast is made from each ensemble mem-

ber. The first mesoscale analysis is produced at 0100 UTC

on day 1 with the assimilation of all mesoscale data ob-

served during a 30-min window centered on the analysis

time (i.e., 0100 UTC). Mesoscale observations are then

assimilated every 1 h out to the beginning of a storm-

scale experiment. The start times for the six storm-scale

experiments were guided by mesoscale discussions and

watch issuance from the Storm Prediction Center and

are event dependent, with all occurring at the top of the

hour between 1800 and 2100 UTC on day 1. While each

experiment start time began within 30min of watch is-

suance, the length of the storm-scale experiments (i.e.,

the number of radar data assimilation cycles) was then

dictated by event. Since the mesoscale observations are

available hourly with ;30-min latency, there was no

mesoscale data assimilation on the parent grid once the

temporally higher-resolution radar data assimilation

began on the storm-scale (3 km) grid. The parent grid is

merely integrated forward to continue to provide

boundary conditions for the storm-scale grid.

The fifth-order piecewise rational function of Gaspari

and Cohn [(1999); their Eq. (4.10)]—a Gaussian-like

spatial localization function—is used to lessen the im-

pact of or remove spurious correlations with state vari-

ables at considerable distances from observations and

correlations associated with less than optimal ensemble

size. Except for mesonet observations, the horizontal

localization cutoff for all mesoscale observations is

;458 km, while the vertical localization cutoff (i.e.,

where the weight reaches zero) is 8 km [consistent with

Wheatley et al. (2012)]. The relatively high-density

mesonet observations have a horizontal localization

cutoff of ;60km [consistent with Sobash and Stensrud

(2015)] with the same vertical localization cutoff as

above. In an effort to maintain ensemble spread, the

spatially and temporally varying prior adaptive inflation

(Anderson 2007; DART namelist options: inf_initial5 1.0,

inf_sd_initial5 0.8, inf_damping5 0.9, inf_lower_bound5
1.0, inf_upper_bound 5 100, and inf_sd_lower_bound 5
0.8) is applied to the prior ensemble estimate at the outset

of each assimilation step.

b. Storm-scale data assimilation

Each storm-scale data assimilation experiment uti-

lizes level II reflectivity greater than 10 dBZ and radial

velocity observations from three WSR-88Ds closest to

the studied convection (see Table 1 for event-specific

radars). Reflectivity values below 10dBZ are less likely

to indicate precipitation and are at times noisy. The

radar data are objectively analyzed to a 6-km Cartesian

FIG. 3. CONUS (mesoscale) and nested (storm scale) domains

used for data assimilation experiments. Gray dots showWSR-88D

sites across the United States, while green dots show WSR-88D

sites used in this study. See Table 1 for event-specific radars.

TABLE 2. Multiphysics options applied to GEFS members to ini-

tializeNEWS-emembers 1–18.This set of physics options also is applied

to the (same)GEFSmembers—in reverse order—to initializeNEWS-e

members 19–36. (Therefore, NEWS-e member 19 is constructed by

applying physics option 1 to GEFS member 18, and so on, such that

no NEWS-e member is identically configured.) For all members, the

Thompson microphysics and RAP land surface parameterization is

applied. The PBL column includes the Yonsei University (YSU),

Mellor–Yamada–Janjic (MYJ), andMellor–Yamada–Nakanishi–Niino

(MYNN) schemes. The radiation column includes the Rapid Radiative

Transfer Model (RRTM) shortwave scheme and the Rapid Radiative

Transfer Model–Global (RRTMG) shortwave and longwave schemes.

Parameterizations

Member Cumulus PBL

Radiation

Shortwave Longwave

1 Kain–Fritsch YSU Dudhia RRTM

2 YSU RRTMG RRTMG

3 MYJ Dudhia RRTM

4 MYJ RRTMG RRTMG

5 MYNN Dudhia RRTM

6 MYNN RRTMG RRTMG

7 Grell YSU Dudhia RRTM

8 YSU RRTMG RRTMG

9 MYJ Dudhia RRTM

10 MYJ RRTMG RRTMG

11 MYNN Dudhia RRTM

12 MYNN RRTMG RRTMG

13 Tiedtke YSU Dudhia RRTM

14 YSU RRTMG RRTMG

15 MYJ Dudhia RRTM

16 MYJ RRTMG RRTMG

17 MYNN Dudhia RRTM

18 MYNN RRTMG RRTMG
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grid on each of the original conical elevation scans, using the

Cressman scheme (Cressman 1959) encoded in the Obser-

vation Processing and Wind Synthesis (OPAWS; Majcen

et al. 2008) software. The radar data are interpolated in an

effort to decorrelate the observation errors, and to remove

signals in the data of less than two horizontal grid lengths.

For each experiment, the first storm-scale analysis is

produced at the top of the start hour with the assimila-

tion of all radar data observed during a 5-min window

centered on the analysis time. The use of a wider data

window can give rise to spurious convection in the

storm-scale analyses, owing to the convective time scale

and often-rapid motion of severe thunderstorms. Radar

data are then assimilated every 15min until the time of

observed tornado touchdown3 (see Table 1). Observation

error standard deviations for radial velocity and re-

flectivity were fixed at 3m s21 and 5dBZ, similar to the

previous studies of Dowell et al. (2004), Aksoy et al.

(2009), and Yussouf et al. (2013b). An outlier test in

DART is used to discard any radar observation where

the squared difference between an observation value and

its prior ensemble mean estimate exceeds 3 times the

sum of the observation error variance and prior ensem-

ble variance. This test discards approximately 10%–20%

of the reflectivity observations during the first three to

five update cycles (i.e., during the spinup), and less than

10% in later update cycles. No more than a few per-

centage points of the radial velocity observations are

rejected as outliers during the storm-scale data assimi-

lation. The additive noise technique described in Dowell

and Wicker (2009) is used to maintain spread during

radar data assimilation. Local perturbations are added to

each member’s wind (0.5ms21), temperature (0.5K),

and dewpoint (0.5K) fields where the reflectivity obser-

vations exceed 25dBZ (i.e., indicate precipitation) and

the absolute difference between a reflectivity observa-

tion and its posterior ensemble mean estimate is ,10dBZ

(Sobash and Wicker 2015). Where available (because of

grid placement), the Oklahoma Mesonet data valid during

the same 5-min window as the radar observations are also

assimilated onto the 3-km grid.

Horizontal and vertical localization cutoffs of 18 and

6km, respectively, are used for radar data. These choices for

length scales are guided by previous data assimilation case

studies of an isolated supercell thunderstorm and MCS by

Yussouf et al. (2013b) and Wheatley et al. (2014). It is also

noted that Sobash and Stensrud (2013) found that larger

horizontal localization cutoffs could be beneficial when

convective evolution is dominated by thunderstorm inter-

actions or upscale growth into a mesoconvective system.

c. Forecasts

Beginning at ;1h prior to the time of observed tornado

touchdown for the six events (see Table 1), a series of en-

semble forecasts are generated at 15-min intervals following

the convective-scale data assimilation procedure. The ana-

lyses of the parent and nested grid from each ensemble

member serveas initial conditions for the forecasts,while the

downscaled GEFS members (see section 2a) provide the

boundary conditions for the parent domain. Each forecast is

run out to 1h, with 5-min history files generated in order to

permit high-temporal-resolution analysis of the impact of

continued radar data assimilation on forecast evolution.

3. Results

a. Observation-space diagnostics

For each severe thunderstorm event, the overall EnKF

system performance is first evaluated by calculating

observation-space diagnostics for the radar reflectivity and

radial velocity observations ingested during the radar data

assimilation period (Dawson et al. 2012; Yussouf et al.

2013b). The first diagnostic, root-mean-square innovation

(RMSI), provides a measure of the overall fit of the ana-

lyses to the observations and is defined as

RMSI5
ffiffiffiffiffiffiffiffiffi
hd2i

p
, (1)

where d5 y0 2H(xf ) or d5 y0 2H(xa) is the innovation

(i.e., the difference between an observational value and

the interpolated ensemble mean value), y0 is the ob-

servation, H is the forward operator that maps the

model state to the observation location and type, xf and

xa are particular model fields from the forecast or

analysis state vector, an overbar indicates the ensemble

mean, and angle brackets indicate an average at all ob-

servation locations within a radar volume scan. The sec-

ond measure, total ensemble spread (Dowell andWicker

2009), is defined as

total spread5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
obs 1

*
1

N2 1
�
N

n51

[H(x
n
)2H(x)]2

+vuut ,

(2)

where the observation error standard deviation sobs is

assumed to be 5 dBZ and 3ms21 for reflectivity and

radial velocity observations, respectively;N (536) is the

3 The 15-min assimilation period was chosen in an effort to

mimic a quasi-real-time data assimilation system, which is tempo-

rally constrained by the latency period associated with processing

incoming data, running a complex data assimilation system, and

visualizing the output.
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ensemble size; and n is the ensemble member index. It is

noted that radial velocity statistics are calculated at all

observed locations within the 3-kmmodel domain, while

reflectivity statistics are calculated at locations where

observed reflectivity exceeds 10 dBZ (as smaller values

were not assimilated). This threshold is used such that

the performance measure is more representative of the

region in and around the convective system (Aksoy et al.

2009; Dowell et al. 2011; Dawson et al. 2012; Jung

et al. 2012).

For reflectivity, values of prior RMSI in excess of

10 dBZ are common in those experiments where radar

data assimilation begins around convective initiation

and the model state (devoid of the observed convection)

is being adjusted by a relatively small sample of obser-

vations (Figs. 4a,c,e and 5a,c,e). In general, these values

steadily decrease with each subsequent assimilation cy-

cle, with later prior RMSI values ranging from ;7 to

9 dBZ. The prior RMSI magnitudes for radial velocity

range from ;4 to 5ms21 throughout the assimilation

FIG. 4. Observation-space diagnostics for assimilated reflectivity (dBZ) and radial velocity (m s21) calculated for the radar data as-

similation experiments on (a),(b) 19 May; (c),(d) 20 May; and (e),(f) 31 May 2013. RMSI and total spread are calculated every 15min

during the period of radar data assimilation. Diagnostics quantities are computed only where the assimilated reflectivity observations are

greater than 10 dBZ, while no threshold is applied to assimilated radial velocity observations. Also, diagnostic quantities are calculated for

both the prior ensemble mean and the EnKF update, which yields the sawtooth patterns.
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period (Figs. 4b,d,f and 5b,d,f). As convection initiates

and matures, prior spread values associated with re-

flectivity grow in the first 30min of assimilation in re-

sponse to the additive noise and adaptive inflation, but

then stabilize for the remainder of the assimilation pe-

riod, ranging from ;8 to 9 dBZ. For all events, prior

spread values for radial velocity range approximately

from 4 to 6ms21 throughout the assimilation period.

The above numbers for the RMSI and total spread for

each radar reflectivity and radial velocity are put into ad-

ditional context by calculating the consistency ratio (see

Dawson et al. 2012; Yussouf et al. 2013b), which gauges

whether the prior spread and RMSI are in tune with the

assumed observation error. This ratio is defined as

consistency ratio5

s2
obs 1

*
1

N21
�
N

n51

[H(x
n
)2H(x)]2

+

hd2i ,

(3)

where a value of;1.0 is indicative of sufficient ensemble

prior spread for the assumed observation errors. In each

case, the consistency ratios for reflectivity generally

fall within the range 0.7–1.3, beyond the first few

FIG. 5. As in Fig. 4, but for the radar data assimilation experiments on (a),(b) 27 Apr; (c),(d) 28 Apr; and (e),(f) 11–12 May 2014.
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assimilation cycles (Fig. 6). The consistency ratios for

radial velocity over the same period are somewhat

larger and, generally, fall within the range 1.0–1.5. The

values of the consistency ratio suggest a reasonable

system configuration at the end of the spinup.

The quality of observation-space diagnostics for radar

data are shown primarily to demonstrate that the data

assimilation system is tuned reasonably well for these

observations and has similar characteristics to prior ra-

dar data assimilation cases for supercellular and multi-

cellular convection. Unfortunately, even a good model

fit to the observations during the assimilation phase does

not guarantee improved storm-scale forecasts. The fol-

lowing section evaluates the forecasts produced by

NEWS-e, relevant to tornadic storms and convectively

driven high-wind events.

b. Model-space diagnostics

After just five to nine radar data assimilation cycles

(with the exception of the 27 April 2014 tornadic event),

the ensemble posterior mean reflectivity fields derived

from EnKF updates closest to the time of the first tor-

nado report show simulated thunderstorms in proximity

to those displayed in observed radar data [provided by

the Multi-Radar/Multi-Sensor (MRMS) system]

from each event (see Figs. 1 and 2). The simulated core

of 40 dBZ or greater in the 11 May 2014 tornadic event

shows the greatest discrepancy with its observed storm,

FIG. 6. Consistency ratios (calculated using prior ensemble spread) during the radar data assimilation period for (a) 19 May 2013,

(b) 20May 2013, (c) 31May 2013, (d) 27Apr 2014, (e) 28Apr 2014, and (f) 11–12May 2014. Solid blue and green lines indicate consistency

ratios for radar reflectivity and radial velocity, respectively. Dashed blue and green lines indicate the number of assimilated radar re-

flectivity and radial velocity observations, respectively.
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with a highly underdeveloped eastern flank and spurious

convection just to its north. It is also noted that, in general,

the simulated cores of greater than 40dBZ are spatially

smaller than those of observed storms. This result is un-

derscored byFigs. 4 and 5,where therewas a persistent low

bias in the reflectivity statistics, for each event. Such a bias

may, in part, be attributable to the storm-scale grid’s 3-km

horizontal spacing, characteristic behavior of the micro-

physical scheme, or a combination of both.

Figures 1 and 2 provide some confidence in the pos-

terior ensemble mean fields produced by radar data as-

similation, but they only show a single occurrence in the

respective storms’ evolutions. To provide a better sense

of ensemble ‘‘spinup’’ resulting from the radar data as-

similation cycling, plots of maximum vertical velocity in

the 2–5-km layer versus forecast time were derived from

the storm-scale ensemble, within the subdomains (of the

full storm-scale grid) displayed in Figs. 10 and 13 (Fig.

7). Maximum vertical velocity values are recorded for

each ensemble member at the analysis time used to

initialize the forecast and then from 5-min ensemble

forecast output through the forecast end time. The en-

semble mean maximum vertical velocity value at each

forecast output time is calculated by averaging all

members that lie within the 10th and 90th percentiles, to

lessen the impact of outliers. Plots from every other

forecast are shown for each event in Fig. 7, starting with

the first ensemble forecast (initialized from the first

storm-scale analysis) and ending with the last ensemble

forecast, around the time of the first tornado report.

The three severe weather events from spring 2013, as

well as the 11–12 May 2014 event, are similar in that

radar data assimilation began around the time of con-

vective initiation. In contrast, the severe weather events

FIG. 7. Plots of max vertical velocity in the 2–5-km layer vs forecast time derived from the storm-scale ensemble forecasts, within the

subdomains displayed in Figs. 10 and 13 (described in greater detail below), for the (a) 19 May 2013, (b) 20 May 2013, (c) 31 May 2013,

(d) 27 Apr 2014, (e) 28 Apr 2014, and (f) 11–12 May 2014 severe thunderstorm events. Plots from every other forecast are shown for each

event, starting with the first ensemble forecast (initialized from the first storm-scale analysis) and ending with the last ensemble forecast,

around the time of first tornado report. The tornado report times from Table 1 (second column) are included.
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on 27 and 28 April were longer-duration events and

characterized by more widespread regional coverage of

convection, such that some elements of convection are

ongoing as radar data assimilation begins. For the for-

mer events, except on 31 May 2013 (which was charac-

terized by a very high-CAPE, high-shear environment),

maximum vertical velocity values begin at less than

5m s21 and increase over the period of the 1-h forecast,

suggesting that the radar data assimilation introduces

storms into the model state that continue to grow in

intensity (Figs. 7a–f). Maximum vertical velocity values

gradually level off over the next five to nine radar data

assimilation cycles—consistent with Yussouf and

Stensrud (2010)—with many of the curves at these later

forecast times showing a period of spinup (and then

spindown) in the first 15–30min of a given forecast. For

the 27 and 28 April 2014 events, maximum vertical ve-

locity values begin around 10ms21, as convection is

ongoing on the storm-scale grid, and quickly level off to

values of 10–15m s21 in later forecasts. The somewhat

weaker updrafts for these two events likely are owed to

the relatively lower-CAPE environments in which they

developed.

It is also instructive to briefly consider the near-storm

environment in which the simulated storms evolve, in

order to provide broader context to the ensemble

probabilistic forecasts presented below. To this end,

observed 0–6-km hodographs derived from special NWS

soundings (i.e., those soundings released at times other

than 0000 and 1200 UTC, in anticipation of severe

weather) have been compared to ensemble mean 0–6-km

hodographs. The ensemblemean hodographs exhibit the

general shape of the observed hodographs for each

event (Fig. 8); however, for each event, it is seen that the

observed hodograph often lies outside the individual

ensemble members. The hodographs calculated at

2100 UTC 27 April 2014 from the individual ensemble

members (Fig. 8d) show a rather wide distribution about

the mean, particularly in the 0–1-km layer, owing to

effects of nearby convection in the model.

Finally, temperature properties of the simulated, near-

surface cold pools are evaluated by calculating the en-

semble mean 2-m temperature field at the EnKF analysis

time used to initialize an ensemble forecast (varies by

event), and then from 5-min ensemble forecast output

over the next 1-h period. Over the entire forecast period

(13 output times), the minimum 2-m temperature value

that occurs at each model grid point is retrieved. The

minimum of hourly surface observations available for the

same period (varies by event) is then overlaid on the re-

sultant model temperature fields (see Fig. 9). In this study,

the Oklahoma Mesonet provides the only relatively

dense, high-temporal-frequency dataset for comparison,

so the primary focus is on the three severe weather events

that occurred over central Oklahoma.

Using the above forecast temperature fields, a domain-

averaged RMS value was calculated for each of the 19, 20,

and 31 May severe weather events, and these values were

found to be 2.28, 1.48, and 1.78C, respectively. More spe-

cifically, in Fig. 9, slight overcooling on the order of 18–38C
is noted in some instances along the peripheries of cold

pools, suggesting their spatial coverage is larger than those of

the observed cold pools. Still, the above error magnitudes

are on the order of the assumed observation-error standard

deviation for temperature, and would hopefully make only

minor contributions to errors in stormmotion and evolution

in these EnKF simulations. Part II includes further discus-

sion on the forecasts of simulated surface temperature.

c. Ensemble probabilistic forecasts of low-level
rotation

For each event, a series of ensemble probabilistic

forecasts (initialized from storm-scale analyses) are

launched during the 1-h period preceding the first tor-

nado report. The ability of these forecasts to reproduce

the low-level rotational characteristics of supercell

thunderstorms is evaluated by calculating the probabil-

ity of 0–2-km vertical vorticity greater than 0.004 s21

over the 1-h forecast period, using the 3 3 3 neighbor-

hood around the corresponding horizontal grid point.

[Similar magnitudes of vorticity were utilized at 3-km

horizontal gridpoint spacing in previous works by Trapp

et al. (2007) and Yussouf et al. (2013b, 2015).] At a given

time and horizontal grid point, the probability is ap-

proximated by the number of ensemble members in

which the vertical vorticity exceeds the above threshold

on any model sigma level below 2km AGL, divided by

the ensemble size. Vorticity fields are first calculated at

the analysis time used to initialize the forecast, and then

from 5-min ensemble forecast output through the fore-

cast end time. The maximum probability recorded at

each horizontal grid point is shown. The reader is re-

minded that—at 3-km horizontal gridpoint spacing—the

resultant vorticity swaths may indicate the presence of

rotating supercells, but do not indicate model-predicted

tornados or even necessarily tornadic supercells. Spe-

cifically, Trapp et al. (2005) found that ;40% of thun-

derstorms with low-level mesocyclone detections were

associated with tornadoes.

1) WARM SEASON 2013

The first ensemble forecasts were launched at 2015,

1900, and 2200 UTC, respectively, for the 19, 20, and

31 May tornadic events. For the 19 May event, six radar

data assimilation cycles were performed in the 75min

leading up to the first ensemble forecast. Similarly, for
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FIG. 8. Comparison of observed (black contour) and ensemble posterior mean (green

contour) 0–6-km hodographs from (a) Norman, Oklahoma (KOUN), at 1800 UTC 19 May

2013; (b) KOUN at 1800 UTC 20 May 2013; (c) KOUN at 1800 UTC 31May 2013; (d) KLZK

at 2100 UTC 27 Apr 2014; (e) KJAN at 1800 UTC 28 Apr 2014; and (f) KOAX at 1800 UTC

11 May 2014. Red contours show hodographs calculated from individual ensemble members.

The black and green dots along the observed and ensemble mean hodograph traces, re-

spectively, indicate the heights of 0, 1, 2, 3, 4, 5, and 6 km AGL.
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the 20 and 31 May events, five radar data assimilation

cycles were performed in the 60min before the first

ensemble forecasts.

The first ensemble forecasts for the 19 and 20 May

tornadic events produce probability magnitudes of

;0.2–0.4 (or less) prior to the first observed tornado

reports (Figs. 10a,d). In contrast, the first ensemble

forecast for the 31 May tornadic events produces sig-

nificantly higher probabilities (greater than 0.6), which

are spatially collocated with the observed tornado track

(Fig. 10g), and similarly high probabilities persist in all

subsequent forecasts launched for this event (Figs. 10h,i).

More defined, albeit relatively weak (;0.4 or less), vor-

ticity swaths are present in the 1-h ensemble forecasts

launched approximately 45min prior to the 19 and 20May

2013 tornadoes, but they are displaced to the north of the

observed tornado tracks (not shown). In each of these

events, the northward displacement decreases in later

forecasts, while the probabilitymagnitudes associatedwith

the 20May tornadic event also increase (.0.6; Figs. 10b,e).

Much like the 31 May 2013 tornadic event, the ensemble

forecasts launched on 19 and 20 May within 30min of the

first tornado reports produce significantly higher proba-

bilities (.0.6) that are spatially collocated with the ob-

served tornado track (see, e.g., Figs. 10c,f).

The source of displacement errors in the vorticity

swaths forecasts for 19 and 20May 2013 is likely twofold.

In each of the 19, 20, and 31May 2013 events, the first 1-h

ensemble forecasts are launched after relatively few4

(five, six, and five, respectively) radar assimilation cy-

cles, when the horizontal scale of the developing con-

vection is smaller than tens of kilometers (see black

contours in Figs. 10a,b,d,e). On 19 May, only the largest

convective cell (of three observed) is present in the en-

semblemean reflectivity field at 2015UTC (Fig. 11). The

analysis increments appropriately reinforce this updraft

but this has little initial impact on the smaller updrafts.

Thus, the earlier forecasts miss a storm merger in the

southwestern quadrant of the largest convective cell that

appears to influence the location of maximum low-level

rotation at later times (Figs. 10a–c).

In contrast to the 19 and 20 May events, observed

convective initiation occurs rather rapidly on 31 May

2013 during the period 2130–2200 UTC, and it grows to

larger spatial scales more quickly (than storms during

the early development stages on 19 and 20 May). Thus,

on 31 May, the simulated storms are likely better re-

solved at these earlier times by the 3-km mesh, which

may support retention of information introduced by the

radar data assimilation. It should also be noted that the

observed and modeled storm environments on 31 May

were very conducive to generating rotating thunder-

storms (Fig. 8c). This environmental constraint may

make this event inherently more predictable than the 19

and 20 May events, such that low probabilities at longer

lead times in the two earlier events are entirely appro-

priate and a necessary consideration in the forecast de-

cision process.

The above comparison of ensemble probabilistic fore-

casts of low-level rotation to observed tornado tracks

qualitatively suggests forecast improvements with addi-

tional radar data assimilation cycles. For a more quanti-

tative assessment, the equitable threat score (ETS; Wilks

FIG. 9. Min ensemble mean 2-m temperatures (8C; see color bar) for forecasts launched at (a) 2300 UTC 19 May, (b) 2000 UTC 20 May,

and (c) 2300 UTC 31 May 2013. Colored dots overlaid show min observed 2-m temperatures (8C) for the same period.

4 Yussouf and Stensrud (2010) found that approximately 8–10

radar data assimilation cycles were necessary to establish an iso-

lated supercell thunderstorm within a model background.
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2006) is computed in model space using the forecast en-

semble mean reflectivity field from each experiment. For

horizontal grid points that lie on the;3-kmmodel vertical

grid level, a ‘‘hit’’ is counted if the ensemble mean

reflectivity field and MRMS reflectivity exceed a 40-dBZ

threshold within63km horizontally and61 model levels

vertically of a given grid point. A ‘‘false detection’’ is

counted if the ensemble mean reflectivity exceeds the

FIG. 10. Probabilities of 0–2-km vertical vorticity. 0.004 s21 (red shading; see color bar) derived from 1-h ensemble forecasts launched

approximately (left) 60min, (middle) 30min, and (right) just before the first tornado reports, for the (a)–(c) 19 May, (d)–(f) 20 May, and

(g)–(i) 31May 2013 severe thunderstorm events. The black lines indicate the observed 25- and 40-dBZ reflectivity contours. The blue lines

indicate the observed tornado tracks.
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threshold of 40dBZ and the observations do not. A ‘‘cor-

rect null forecast’’ is counted if neither the ensemble mean

reflectivity field nor observations exceed this threshold.

For a given event, a single ETS curve is plotted for each of

the five forecasts launched during the 1-h period preceding

the time of first tornado report, by averaging all ETS curves

generated from individual ensemble members.

For a given experiment and forecast, it is shown that

forecasts launched with each successive radar data as-

similation cycle generally produce higher ETS than ear-

lier forecasts, with this trend continuing until the last

forecast around the time of first tornado report

(Figs. 12a–c). The higher ETS relative to earlier fore-

casts is most pronounced over the first 30min of a given

forecast. In all forecasts across events, though, the ETS

does decrease over time such that the skill of any newer

forecast is much less pronounced in the trailing 15–

30min. Decreasing scores with time may be, in part, a

consequence of storm dissipation; however, the earlier

analysis of maximum vertical velocity with time (see

Figs. 7a–c) showed that storms introduced into the

ensemble were able to grow upscale and persist. Dis-

persion of storm ‘‘objects’’ in the ensemble is another

factor in the lower scores, as increasing the neighbor-

hood radius to 6 km (not shown in Fig. 12) produced

somewhat higher ETSs at later forecast times.

The next subsection addresses ensemble probabilistic

forecasts during the warm season of 2014.

2) WARM SEASON 2014

The first ensemble forecasts were launched at 2300UTC

for the 27April tornadic event, and at 2000UTC for both

the 28 April and 11 May tornadic events. The 27 and

28 April tornadic events were both characterized by

widespread convection over several hours. Thirteen radar

data assimilation cycles were performed over 3h before

the first ensemble forecast on 27 April, while nine radar

data assimilation cycles were performed over 2h before

the first ensemble forecast on 28 April. For the 11 May

event, five radar data assimilation cycles were performed

in the hour period preceding the first ensemble forecast.

The first ensemble forecast for the 27 April event

produces probabilities of ;0.4–0.6 in association with

the eventual tornado-producing thunderstorm (Fig. 13a).

The first ensemble forecast for the 28 April event pro-

duces somewhat higher probabilities (greater than 0.6) in

association with the thunderstorm that eventually pro-

duced the Louisville, Mississippi, tornado, which had a

history of producing several brief tornado touchdowns

(storm 1 in Fig. 13d). In both events, these higher prob-

abilities are notably greater than those produced at sim-

ilar lead times (greater than 30min prior to the first

tornado report) for the 19 and 20 May 2013 tornado

events, inwhich the radar data assimilation begins around

the time of convective initiation. In contrast, on 11 May

2014, the first radar data assimilation cycle occurs within

the hour preceding initiation, and no significant proba-

bilities of low-level rotation are present in the forecasts

until just 15min before the first tornado report (Fig. 13g).

It is noted, though, that (ongoing) cyclic mesocyclo-

genesis associated with the 11 May 2014 tornadic thun-

derstorm also appears to affect forecast quality. Multiple

circulations are apparent in observed radial velocity fields

(not shown) and in ensemble probabilistic forecasts as

two local maxima in the probability field (see, e.g.,

Figs. 13h,i). However, the 15-min radar data assimilation

updates are probably insufficient to temporally resolve

this rapid physical process onto the model grid, particu-

larly at the earlier forecast start times.

Later ensemble forecasts (i.e., those launched within

30min of the first tornado report) on 27 and 28 April

2014 show clearly defined vorticity swaths associated

with the observed tornadic thunderstorms (see, e.g.,

Figs. 13c,f). However, these same forecasts suggest ad-

ditional rotating thunderstorms within the experimental

domains (as observed for these events), most of which

did not produce tornadoes. The ensemble forecasts

launched between 2300 UTC 27 April and 0000 UTC

28 April suggest as many as four additional rotating

FIG. 11. Ensemble posteriormean 2 kmAGL radar reflectivity at

2015 UTC 19 May 2013. The black contours indicate the observed

40-dBZ radar reflectivity contours.
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thunderstorms (see Fig. 13a). Vorticity swaths associated

with these nontornadic thunderstorms possess probability

magnitudes of ;0.6–0.8, while probability magnitudes

quickly exceed 0.8 with the only tornado-producing thun-

derstorm.Only at the last forecast time (0000UTC28April)

does any vorticity swath associated with a nontornadic

thunderstorm produce probabilities in excess of 0.8.

The ensemble forecasts launched between 2000 and

2100 UTC 28 April show an additional vorticity swath

tens of kilometers north-northeast of the relatively long-

track tornado in Louisville, Mississippi, in association

with a thunderstorm that produced a brief tornado

touchdown between 1930 and 2000 UTC (storm 3 in

Fig. 13d). In the forecast launched at 2000 UTC, prob-

ability magnitudes associated with this thunderstorm

exceed those of the thunderstorm that produces the

Louisville tornado (storm 1 in Fig. 13d), but they rapidly

decrease in later forecasts (Figs. 13e,f). This forecast

trend suggests the diminishing probability that the sim-

ulated storm will produce tornadoes. It is also noted that

the ensemble forecasts for this event produce low

probabilities of rotation in another thunderstorm lo-

cated just north of the thunderstorm that produces the

Louisville tornado (storm 2 in Fig. 13d). Ensemble

probabilistic forecasts of reflectivity structure suggest

that the simulated storm exhibits storm motion with too

strong a north-northeasterly component (Fig. 14), such

that it is undercut by the cold pool from the storm just to

its north (not shown).

For additional context, it is noted that ETS curves were

calculated for the 2014warm season events using the same

methodology employed for the 2013 events. Discussion of

the ETS curves for the 2014 events (Figs. 12d–f) follows

that provided above for the 2013 events (Figs. 12a–c). For

each event, forecasts launched with successive radar data

assimilation cycles generally produce higher ETSs than

previous forecasts, particularly over the first 30min of the

most recent forecast. Furthermore, decreasing scores with

time are likely a result in large part of the dispersion of

storm ‘‘objects’’ in the ensemble, as the earlier analysis of

maximum vertical velocity with time (Figs. 7d–f) showed

that storms introduced into the ensemble were able to

grow upscale and persist.

Thus, the combined suite of ensemble probabilistic

forecasts of low-level rotation produced during tornadic

events from spring 2013 and 2014 suggest that it is pos-

sible to highlight strongly rotating thunderstorms at lead

times of;30min before the time of first tornado report.

Particularly in cases of widespread convection, though,

additional work (and likely greater horizontal gridpoint

resolution) will be needed to understand whether these

types of forecasts can predict the probability that a given

storm will produce tornadoes.

3) APPLICATION OF THE NEWS-e FORECASTS

FOR UPSCALE GROWTH AND ORGANIZATION

Radar data were assimilated every 15min for the pe-

riod from 1900 UTC 11 May to 0300 UTC 12 May 2014

FIG. 12. ETSs for ensemble mean reflectivity forecasts, calculated from the six radar assimilation experiments in this study. Simulated

reflectivity is compared to the NSSL National 3D Reflectivity Mosaic. For a given event, a single ETS curve is plotted for each of the five

forecasts launched during the 1-h period preceding the time of first tornado report, by averaging all ETS curves generated from individual

ensemble members.
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to gauge whether sampling errors (caused by the limited

number of ensemble members) slowly degrade the

quality of forecasts for a long-duration severe weather

event. This period was marked by a supercell-to-MCS

transition over eastern Nebraska and western Iowa, with

both convective modes associated with tornado and

high-wind reports. By 0300 UTC, a well-organized

tornadicMCS wasmoving east-northeast across western

FIG. 13. Probabilities of 0–2-km vertical vorticity.0.004 s21 (red shading; see color bar) derived from 1-h ensemble forecasts launched

approximately (left) 60min, (middle) 30min, and (right) just before the first tornado reports, for the (a)–(c) 27 Apr, (d)–(f) 28 Apr, and

(g)–(i) 11–12 May 2014 severe thunderstorm events. The black lines indicate the observed 40-dBZ reflectivity contours. The blue lines

indicate the observed tornado tracks.
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Iowa. The most significant tornado occurring during this

stage of the event produced a 10.35-mi-long path of EF2

damage just west of Des Moines, Iowa.

Ensemble mean reflectivity after 33 EnKF updates

(i.e., at 0300 UTC) suggests that any accumulation of

analysis errors has yet to prevent a reasonable simula-

tion of this event (Fig. 15). Storm-scale analyses at these

later times were used to launch a series of 1-h ensemble

forecasts for the periods 0200–0300 (approximately 1 h

before theEF2 tornado), 0230–0330, and 0300–0400UTC

(Figs. 16a–c). Probabilities of ;0.6–0.8 on the northern

end of the line persist in all three forecast periods, in

association with the northern line-end vortex (which

produced no wind or tornado reports). More isolated

FIG. 14. Probabilities of 2 km AGL radar reflectivity .40 dBZ (red shading; see color bar) derived from the storm-scale analysis at

(a) 2000 UTC 11 May 2013 and subsequent (b) 15- and (c) 30-min ensemble probabilistic forecasts. The black lines indicate the observed

40-dBZ reflectivity contours. The blue lines indicate the observed tornado tracks.

FIG. 15. As in Fig. 1, but for the (left) observed and (right) simulated ensemble mean 3 km AGL reflectivity at 0300 UTC 12 May 2014.

DECEMBER 2015 WHEATLEY ET AL . 1813

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:03 PM UTC



convection along the southern end of the line also

produces a second area of generally weaker probabili-

ties (;0.4–0.6) to the south-southwest of the MCS.

Several local maxima in the probability field occur

along the line’s north–south extent, in association with

mesovortices embedded within the leading-edge con-

vection. Some of these mesovortices are only margin-

ally resolved and more transient in nature. In all three

forecasts, though, the tornadic mesovortex—associated

with the EF2 tornado—produces vorticity swaths (with

probability magnitudes of 0.6–0.8 and greater) coincident

with observed tornado tracks. While this finding suggests

that NEWS-e has the ability to highlight potentially haz-

ardous bow-echo mesovortices, future work (including

moreMCS case studies) will be needed to see if these types

of forecasts can establish the categorization between non-

damaging and damaging mesovortices.

4. Summary and discussion

In support of the Warn-on-Forecast project, NEWS-e

has been used to produce storm-scale ensemble analyses

and forecasts of six diverse severe weather events from

spring 2013 and 2014. Reflectivity and radial velocity ob-

servations from several radarswere assimilated—beginning

just prior to convective initiation—using an EnKF ap-

proach, and a series of 1-h ensemble forecasts were then

initialized from storm-scale analyses during the 1-h period

preceding the onset of storm reports. Of particular interest

was the ability of these 0–1-h ensemble forecasts to re-

produce the low-level rotational characteristics of super-

cell thunderstorms, as well as other convective hazards.

All six EnKF experiments are able to reproduce ro-

tating thunderstorms in association with the observed

tornado-producing storms. With the exception of the

11 May 2014 tornadic event in central Nebraska, clearly

defined vorticity swaths were generally present in 1-h

ensemble forecasts launched approximately 30min be-

fore the first tornado report. Displacement errors (often

to the north of tornado-affected areas) associated with

vorticity swaths were greatest in those forecasts

launched 30–60min before the time of first tornado.

While other storm-scale data assimilation experiments

have noted similar displacement errors and/or too fast

storm motion [including those utilizing other weather

forecasting models; e.g., Dawson et al. (2012)], an ob-

servation system simulation experiment (OSSE) per-

formed at the storm scale by Potvin and Wicker (2013)

did not see pronounced displacement or motion errors.

This discrepancy suggests that these types of errors may

be related to model error or some nonlinear effect be-

tween model error and the radar data assimilation.

In those events in which the observed convection initi-

ates and matures rapidly (e.g., 31 May 2013) or is ongoing

around the time of the first radar data assimilation cycle

(e.g., 27 and 28 April 2014), ensemble probabilistic fore-

casts of low-level rotation often possess probability mag-

nitudes of ;0.4–0.6 or greater as much as 45–60min out

from the first tornado report. In those events in which the

first radar data assimilation cycle precedes convective

initiation and matures more slowly (e.g., 19 and 20 May

2013), the probability magnitudes were generally lower

(less than ;0.4–0.6) in those forecasts launched greater

than 30min out from the first tornado report. For all

events, ensemble probabilistic forecasts of low-level ro-

tation launched within 30min of the first tornado report

generally indicated rotating thunderstorms in close prox-

imity to the observed tornado tracks.

FIG. 16. Probabilities of 0–2-km vertical vorticity.0.004 s21 (red shading; see color bar) derived from 1-h ensemble forecasts launched

at (a) 0200, (b) 0230, and (c) 0300 UTC 12 May 2014. The black lines indicate the observed 40-dBZ reflectivity contours. The blue lines

indicate the observed tornado tracks.
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Additional EnKF experiments suggest that NEWS-e

is suitable for assimilating radar data over long-duration

events, including severe MCSs. Similar forecasts were

produced for a tornadic mesovortex along the leading

edge of a bow echo and, again, produce a well-defined

vorticity swath as much as 30min prior to the first

tornado.

The above results were generated using a relatively

coarse 15-min radar data assimilation interval. How-

ever, the latency period associated with processing

incoming data, running a complex data assimilation

system, and visualizing the output will preclude efforts

to run a quasi-real-time data assimilation system at

higher temporal frequencies, in the near term. Still,

there are a number of areas for active research. A

next logical step will be to run the system at smaller

horizontal gridpoint spacing, in order to investigate

any potential improvements in the representation

of convection in EnKF updates and subsequent

ensemble forecasts. For example, in examining the

19 May 2013 event, the merger of the main updraft

with a smaller storm on the southwestern flank—the

latter of which is poorly resolved until sufficient upscale

growth—yields a vorticity swath displaced too far

northward. Another area of research involves dis-

tinguishing between nontornadic and tornadic super-

cell thunderstorms (which will undoubtedly require

smaller horizontal grid spacing), as was a particular

challenge in the events spanning 27 and 28 April 2014

in this study.

There was some suggestion from 1-h ensemble fore-

casts at later times during the 11–12May 2014 event that

this approach may be equally successful in highlighting

potentially tornadic mesovortices within squall lines and

bow echoes. While mesoscale convective systems can be

as much as an order of magnitude larger than isolated

supercell thunderstorms, bow-echo mesovortices can at

times have diameters of less than 2km. Evaluation of

spatially higher-resolution forecasts is necessary to de-

termine if mesovortices can be anticipated within aWoF

context. Progress on these challenges and others is cru-

cial for accurate very short–range probabilistic forecasts

of severe convective storms, one of the major goals of

the Warn-on-Forecast project.
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